Model Paper Class 11th, 2018

Applied Math

Time: 3 Hours Max. Marks: 100

General Instructions:

a) All questions are compulsory

b) The questions paper contains 29 questions

- c) Question 1-4 in section A are very short answer type questions carrying 1 marks each
- d) Questions 5-12 in section B are short answer type questions carrying 2 marks each
- e) Questions 13-23 in section C are long answer type questions carrying 4 marks each
- f) Questions 24-29 in section D are long answer type questions carrying 6 marks each.
- g) There is no overall choice. However an internal choice is given in three questions of section C and three questions of section D. Do only one out of them.

Section (A)

Ouestions from 1-4 are of 1 mark each

Q.No.1. If a set A has n elements. Then the number of subsets is

(a) n^2

(b) 2^n

(c) n + 2

(d) 2n

Q.No.2. Polynomial equation of degree n has n roots. (True/False)

Q.No.3. The n^{th} term of the sequence $1 \times 2 \times 3 + 2 \times 3 \times 4 + 3 \times 4 \times 5 + \dots$

Q.No.4. For any real numbers, x' and y', $\sin x = \sin y$, implies

(a)
$$x = y$$

(b)
$$x = n\pi + (-1)^n$$

(c)
$$n\pi + (-1)^n y$$
.

(d)
$$x = \frac{\pi}{2} + y$$

Section (B)

Questions from 5-12 are of 2 mark each

Q.No.5. If
$$\left(\frac{x}{3} + 1, y - \frac{2}{3}\right) = \left(\frac{5}{3}, \frac{1}{3}\right)$$
. Find 'x' and 'y'

Q.No.6. Find the multiplicative inverse of $Z=\sqrt{5}+3i$

Q.No.7. Find first four terms of sequence $a_n = (-1)^{n-1}5^{n+1}$

Q.No.8. Find the value of $\sin\{\frac{-11\pi}{3}\}$

Q.No.9. Find the multiplicative inverse of $Z = \sqrt{5} + 3i$

Q.No.10. Find the slope of the line passing through origin and (2,3)

Q.No.11. Find the sample space when a coin is tossed twice.

Q.No.12. Check if the vectors $\vec{a} = 3\hat{i} + 2\hat{j}$ and $\vec{b} = 2i - 3\hat{j}$ are orthogonal.

Section (C)

Questions from 13-23 are of 4 mark each

Q.No.13. If $f = \{(x, \frac{x^2}{1+x^2}) : x \in R\}$ be a function from R to R. Determine the range of f

Q.No.14. Express the following in the form of a + ib

$$\frac{(3+i\sqrt{5})(3-i\sqrt{5})}{(\sqrt{3}+2i)-(\sqrt{3}-2i)}$$

Or

$$\sqrt{3}x^2 - \sqrt{2x} + 3\sqrt{3} = 0$$

Q.No.15. Find the sum of 'n' terms of an A.P whose k^{th} term is 5K + 1

Q.No.16. Prove that
$$\frac{\sin(x+y)}{\sin(x-y)} = \frac{\tan x + \tan y}{\tan x - \tan y}$$

Q.No.17. Find the value of other five trigonometric ratios, given $\cos x = \frac{-1}{2}$; x lies In III quadrant.

Prove the following;

$$\frac{\cos 9x - \cos 5x}{\sin 17x - \sin 3x} = \frac{-\sin 2x}{\cos 10x}$$

Q.No.18. Find the value of 'r' if $5_{P_r}=6_{p_{r-1}}$

Or

How many chords can be drawn through 21 points on a circle.

- Q.No.19. Find the value of $sin\{\frac{-11\pi}{3}\}$
- Q.No.20. Find the slop of the line passing through origin and (2,3)
- Q.No.21. A letter is chosen at random from the word "ASSASSINATION". Find the probability that letter is:
 - (I) a vowel
- (II) a consonant

Q.No.22. Find:

(I) Dot product of;
$$\vec{a} = 3\hat{\imath} + 2\hat{\jmath} - 6\hat{k}$$
 and $\vec{b} = 2\hat{\imath} + 4\hat{\jmath} + 6\hat{k}$

(II) Cross product of;
$$\vec{a} = 2\hat{\imath} + \hat{k}$$
 and $\vec{b} = \hat{\imath} - \hat{\jmath}$

Q.No.23. If ABCDE is a pentagon. Prove that AB + BC + CD + DE + EA = 0

Questions from 24-29 are of 6 mark each

Q.No.24. Let
$$U = \{1,2,3,4,5,6,7,8,9\}$$

$$A = \{2,3,5,7\}$$

$$B = \{1,4,6,8\}$$

Find: (I) $A' \cap b'$

(II) Verify;
$$(A \cup B)' = A' \cap B'$$
 and $(A \cap B)' = A' \cup B'$

Or

Find the domain and the range of the function:

$$f(x) = \sqrt{9 - x^2} \qquad \forall \, x \in R$$

Q.No.25. If α and β are different complex number with $|\beta| = 1$. Find; $\frac{\beta - \alpha}{1 - 2\beta}$ Or

Convert the complex number $Z = \frac{i-1}{\cos{\frac{\pi}{3}} + i\sin{\frac{\pi}{3}}}$ in the polar form

Q.No.26. Sum of first p, q and r terms of an A.P are a, b and c respectively. Prove that; $\frac{a}{q}(q-r) + \frac{b}{q}(r-p) + \frac{c}{r}(p-q) = 0$

Find the sum of the sequence 7, 77, 777, ... to n terms.

- Q.No.27. In how many of the distinct permutations of the letters in MISSISSIPPI do the four I's not come together.
- Q.No.28. If p and q are the lengths of perpendiculars from the origin to the line $x\cos \emptyset - y\sin \emptyset = k\cos 2\emptyset$ and $x\sec \emptyset + y\csc \emptyset = k$ respectively. Prove that $p^2 + 4q^2 = k^2$
- Q.No.29. If E and F are the events such that $P(E) = \frac{1}{4}$; $P(F) = \frac{1}{2}$

and $P(E \text{ and } F) = \frac{1}{8}$. Find;

(I) P(E or F)

(II) P(Not E and Not F)